Robot learning from few demonstrations

Fig:I

tin: I

by exploiting the structure and geometry of data

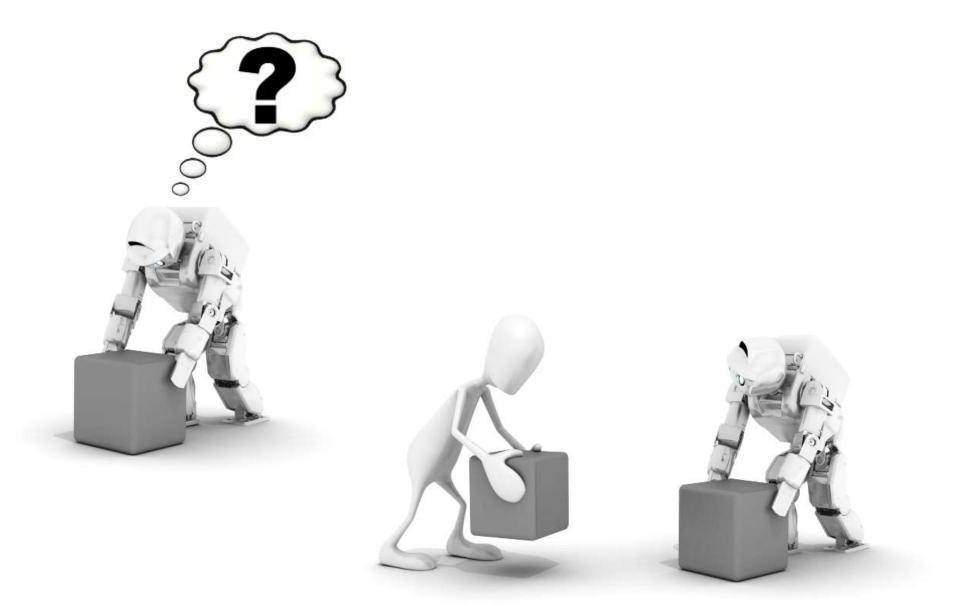
Sylvain Calinon

Senior Researcher Idiap Research Institute, Martigny, Switzerland Lecturer EPFL, Lausanne, Switzerland External Collaborator IIT, Genoa, Italy

Artificial Intelligence for Society

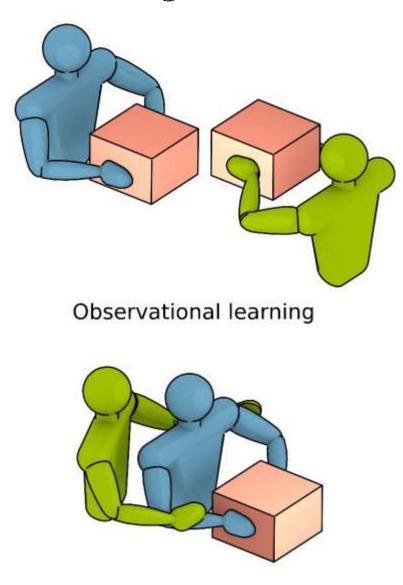
Research Groups:

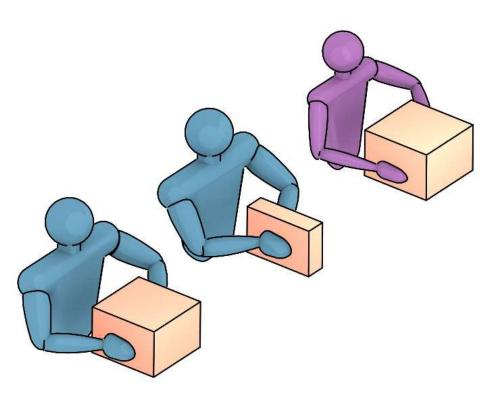
- Speech & Audio Processing
- Perception & Activity Understanding
- Computer Vision & Learning
- Social Computing
- Biometric Person Recognition
- Applied Machine Learning
- Natural Language Processing
- Robot Learning & Interaction
- Computational Bioimaging
- Uncertainty Quantification and Optimal Design



Learning from demonstration as an intuitive interface to transfer skills to robots

Learning from demonstration - Challenges

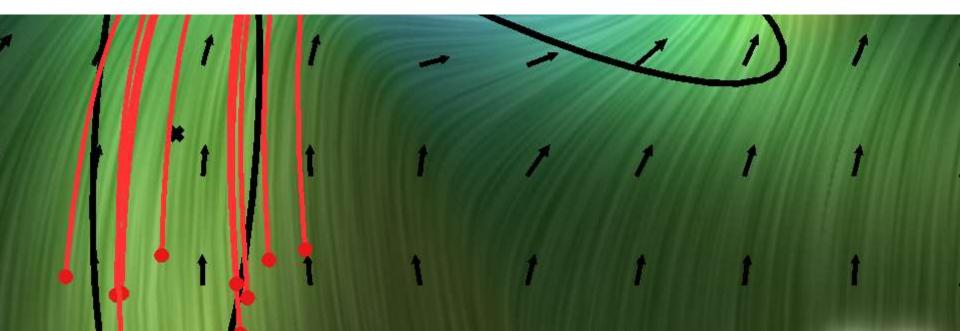




Correspondence problems

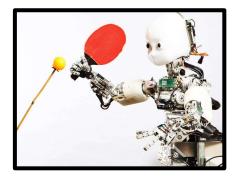
Kinesthetic teaching

Finding *Priors* that are expressive enough to be used in a wide range of tasks

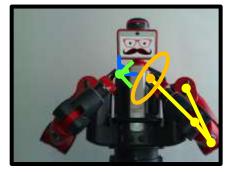




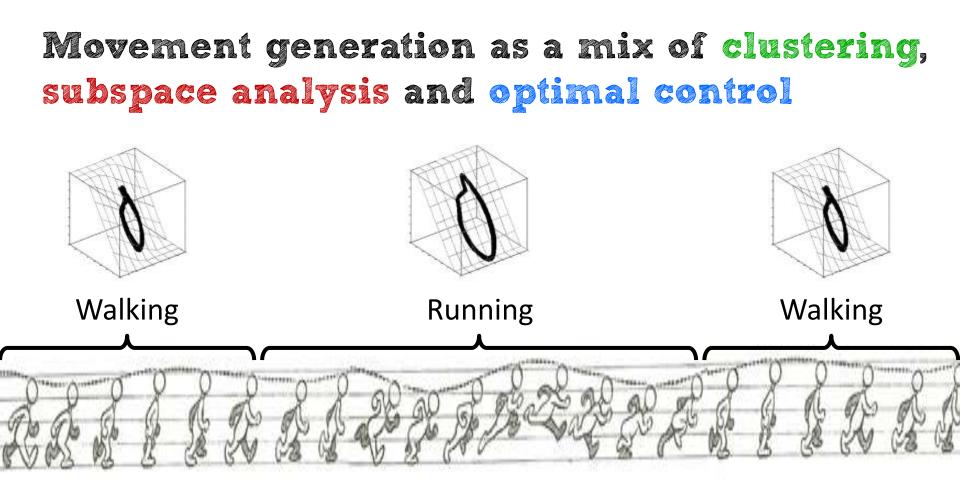
Prior 1: Movements are smooth and continuous



Prior 2: Actions often relate to objects, tools or body landmarks



Prior 3: Data spaces in robotics have geometries and structures



We look for a **compact and modular representation** of **continuous movements and skills** that can learn from **few interactions** (with user and environment), that can **exploit variation and coordination**, and that can **adapt to new situations** in a fast manner.

Learning of motions from few demonstrations

- $oldsymbol{\mu}_i$ center
- \sum_{i} covariance matrix

Sharing of local coordination patterns with:

$$\boldsymbol{\Sigma}_i \!=\! \boldsymbol{H} \boldsymbol{\Sigma}_i^{(diag)} \! \boldsymbol{H}^{\!\!\top}$$

$$\Sigma_{i}^{(diag)}H^{\top}$$

 $\mathcal{N}(\mu_{1},\Sigma_{1})$
 $\mathcal{N}(\mu_{2},\Sigma_{2})$
Dictionary of
coordination
patterns: H

 $\mathcal{N}(\boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3)$

Learning minimal intervention controllers

$$\min_{\boldsymbol{u}} \sum_{t=1}^{T} \frac{\text{Track path! Use low control commands!}}{\left\| \hat{\boldsymbol{x}}_t - \boldsymbol{x}_t \right\|_{\boldsymbol{Q}_t}^2} + \left\| \boldsymbol{u}_t \right\|_{\boldsymbol{R}_t}^2$$

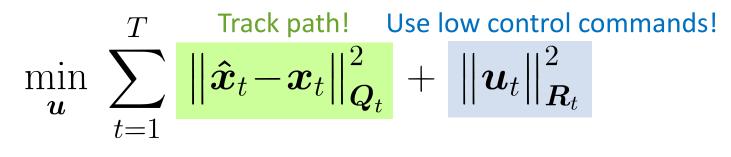
s.t.
$$\dot{\boldsymbol{x}}_t = \boldsymbol{A}\boldsymbol{x}_t + \boldsymbol{B}\boldsymbol{u}_t$$
 _{System plant}

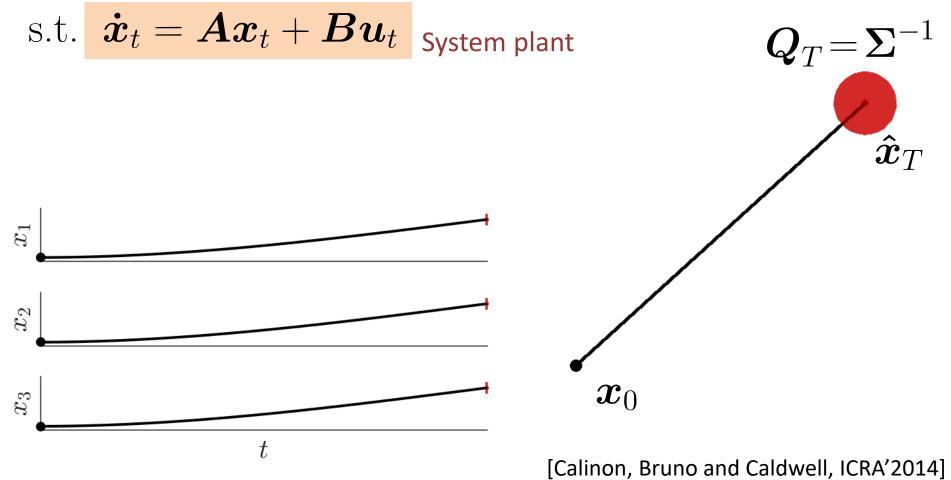
Approach: solving analytically a basic form of **model predictive control** (MPC) in task space with a **double integrator** as constant linear system

- $oldsymbol{x}_t$ state variable (position+velocity)
- $oldsymbol{\hat{x}}_t$ desired state
- $oldsymbol{u}_t$ control command (acceleration)
- $oldsymbol{Q}_t$ tracking weight matrix
- $oldsymbol{R}_t$ control weight matrix

[Calinon, Bruno and Caldwell, ICRA'2014]

Learning minimal intervention controllers

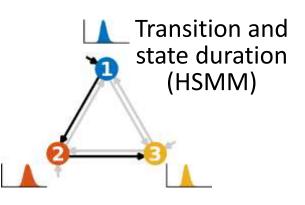


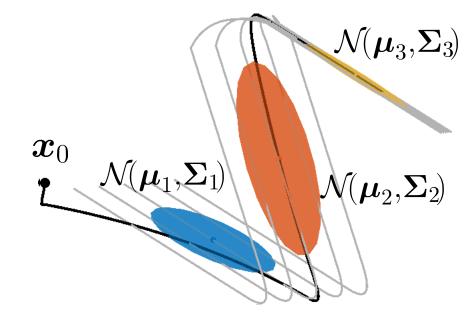


Learning minimal intervention controllers

Analytical solution to generate motion control by following a minimal intervention principle

Stepwise reference with: $\hat{m{x}}_t \!=\! m{\mu}_{s_t} \quad m{Q}_t \!=\! m{\Sigma}_{s_t}^{-1}$





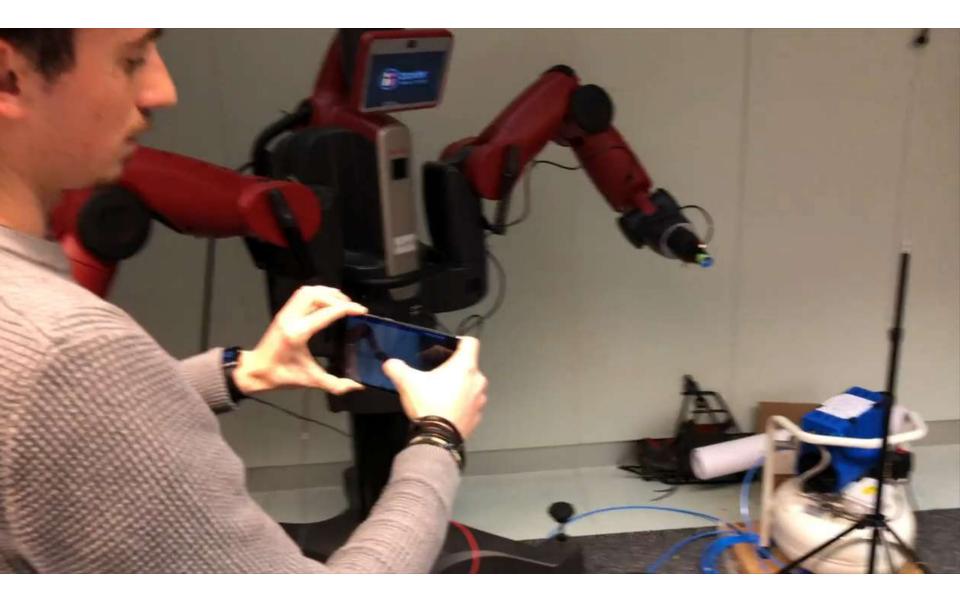
[Calinon, Bruno and Caldwell, ICRA'2014]

Application: Designing motions with variations

Interactive editing of stochastic targets stroke anin 1 User interface to edit and generate natural and dynamic urder 6 motions by considering variation and coordination Compliant controller to retrieve safe and human-like motions Goldsmit "BAXTER" Frederic Fol Leymarie Daniel Berio

[Berio, Calinon and Leymarie, IROS'2016] [Berio, Calinon and Leymarie , MOCO'2017]

Extension to mobile augmented reality interface to visualize and program robot movements



Learning impedance controllers

 \boldsymbol{x}

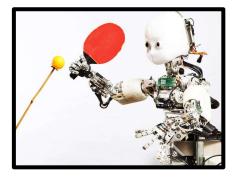
Personalized assistance using haptic and visual information, with compliant controllers following a minimal intervention principle

 \hat{x}

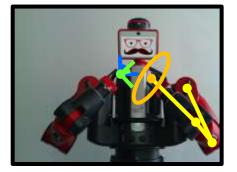
Emmanuel Pignat

[Pignat and Calinon, RAS 93, 2017]

Prior 1: Movements are smooth and continuous



Prior 2: Actions often relate to objects, tools or body landmarks



Prior 3: Data spaces in robotics have geometries and structures

Prior 2: Actions often relate to objects, tools or body landmarks

Photo: Basilio Noris

Regression with a Task-parameterized motions context variable c: • Learning of $\mathcal{P}(oldsymbol{c},oldsymbol{x})$ • Retrieval with $\mathcal{P}(\boldsymbol{x}|\boldsymbol{c})$ Demonstrations Reproduction attempts

→ Generic approach, but limited generalization capability

P Track path in coordinate system j

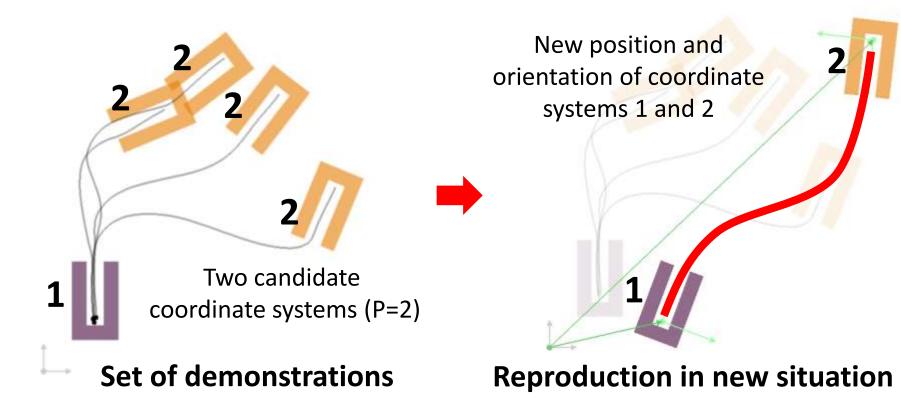
 $\min_{\boldsymbol{u}}$

T

$$\sum_{t=1}^{} \sum_{j=1}^{} \left\| \hat{\boldsymbol{x}}_{t}^{(j)} - \boldsymbol{x}_{t} \right\|_{\boldsymbol{Q}_{t}^{(j)}}^{2} + \left\| \boldsymbol{u}_{t} \right\|_{\boldsymbol{R}_{t}}^{2}$$

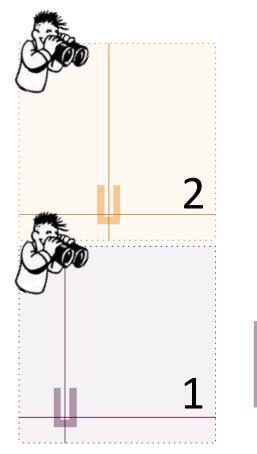
Use low control commands!

s.t. $\dot{\boldsymbol{x}}_t = \boldsymbol{A}\boldsymbol{x}_t + \boldsymbol{B}\boldsymbol{u}_t$



$$\min_{\boldsymbol{u}} \sum_{t=1}^{T} \sum_{j=1}^{P} \left\| \hat{\boldsymbol{x}}_{t}^{(j)} - \boldsymbol{x}_{t} \right\|_{\boldsymbol{Q}_{t}^{(j)}}^{2} + \left\| \boldsymbol{u}_{t} \right\|_{\boldsymbol{R}_{t}}^{2}$$

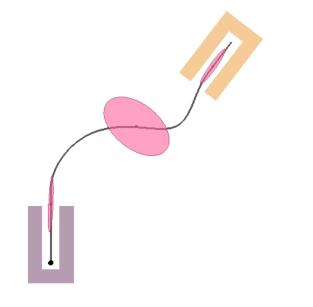
s.t.
$$\dot{\boldsymbol{x}}_t = \boldsymbol{A}\boldsymbol{x}_t + \boldsymbol{B}\boldsymbol{u}_t$$



In many robotics problems, the parameters describing the task or situation can be interpreted as coordinate systems

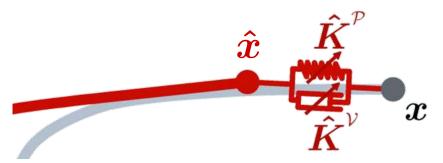
$$\min_{\boldsymbol{u}} \sum_{t=1}^{T} \sum_{j=1}^{P} \|\hat{\boldsymbol{x}}_{t}^{(j)} - \boldsymbol{x}_{t}\|_{\boldsymbol{Q}_{t}^{(j)}}^{2} + \|\boldsymbol{u}_{t}\|_{\boldsymbol{R}_{t}}^{2}$$

s.t. $\dot{\boldsymbol{x}}_t = \boldsymbol{A}\boldsymbol{x}_t + \boldsymbol{B}\boldsymbol{u}_t$



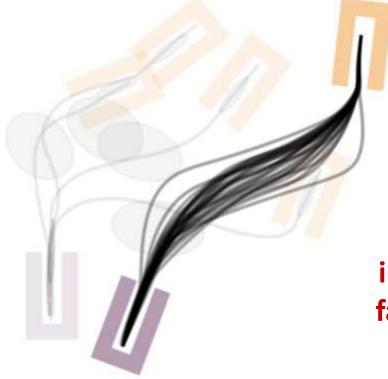
Learning of a controller

(instead of learning a trajectory) that adapts to new situations while regulating the gains according to the precision and coordination required by the task



$$\min_{\boldsymbol{u}} \sum_{t=1}^{T} \sum_{j=1}^{P} \|\hat{\boldsymbol{x}}_{t}^{(j)} - \boldsymbol{x}_{t}\|_{\boldsymbol{Q}_{t}^{(j)}}^{2} + \|\boldsymbol{u}_{t}\|_{\boldsymbol{R}_{t}}^{2}$$

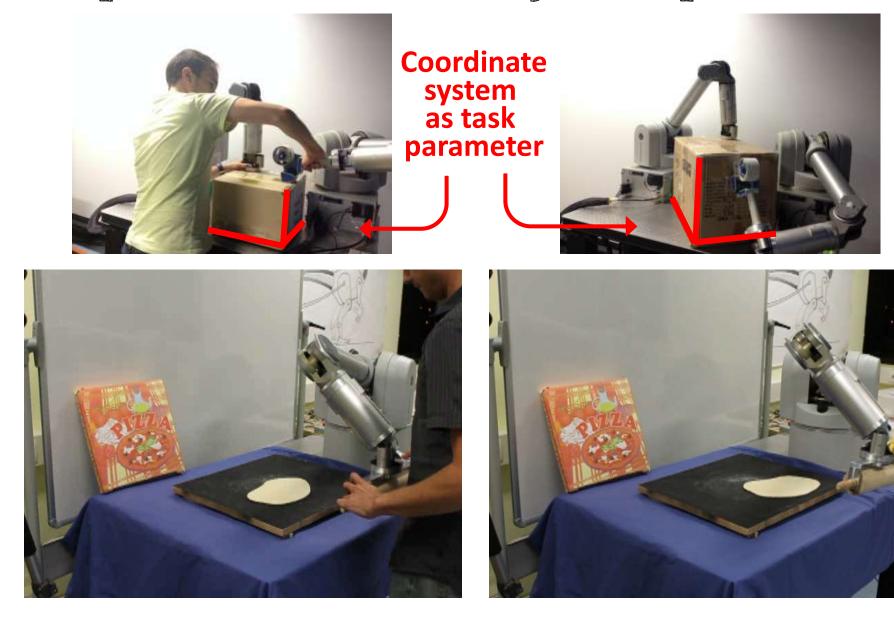
s.t. $\dot{\boldsymbol{x}}_t = \boldsymbol{A}\boldsymbol{x}_t + \boldsymbol{B}\boldsymbol{u}_t$



Retrieval of control commands in the form of trajectory distributions, facilitating exploration and adaptation (in either control or state space)

[Canal, Pignat, Alenya, Calinon and Torras, ICRA'2018]

Adaptation to different object shapes



[Calinon, Alizadeh and Caldwell, IROS'2013]

Bimanual coordination and co-manipulation

[Silvério et al., IROS'2015]

Dr Leonel Rozo

Dr João Silvério

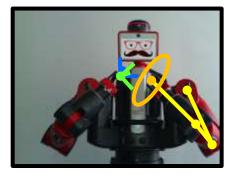
[Rozo et al., IROS'2015]



[Rozo et al., IEEE T-RO 32(3), 2016]

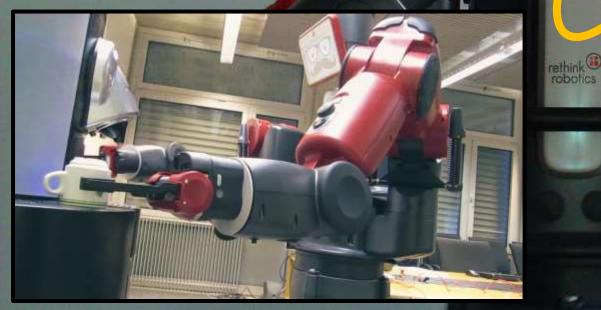
Prior 1: Movements are smooth and continuous

Prior 2: Actions often relate to objects, tools or body landmarks

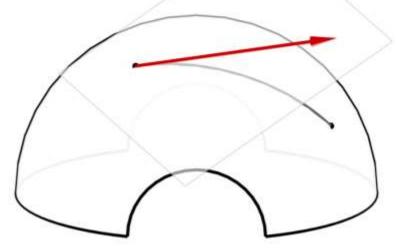


Prior 3: Data spaces in robotics have geometries and structures

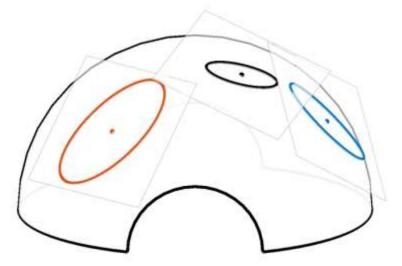
Prior 3: Data spaces in robotics have geometries and structures



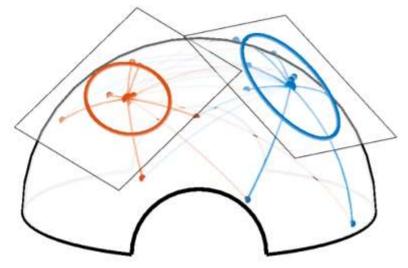
Motivation of using Riemannian manifolds



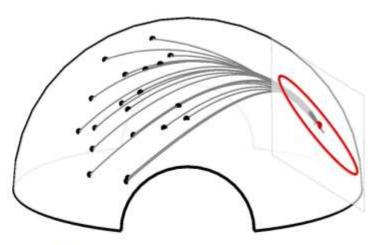
Interpolation and extrapolation



Fusion of sensing/control information

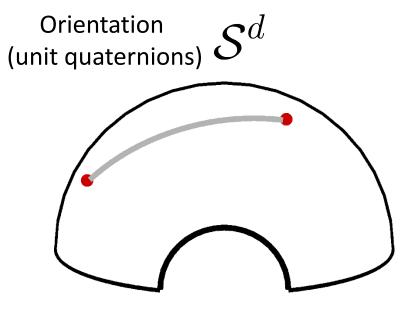


Clustering and distribution



Linear quadratic tracking

Interpolation on Riemannian manifolds



 ${\cal S}^d_\perp$

SE(d)

Rigid body motions (position+orientation)

Covariance features, inertia and gain matrices, manipulability ellipsoids, trajectory distributions (symmetric positive definite matrices)

Clustering on Riemannian manifolds

Covariance features, inertia and gain matrices, manipulability ellipsoids, trajectory distributions (symmetric positive definite matrices)

Orientation (unit quaternions) ${\cal S}^d$

SE(d)

Rigid body motions (position+orientation)

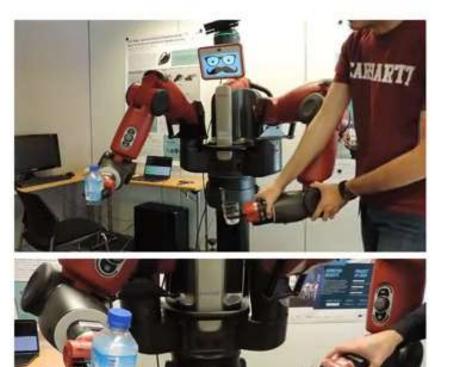
Regression with orientation and position data

Four demonstrations of coordinated bimanual movement

[Zeestraten, Havoutis, Silvério, Calinon and Caldwell, IEEE RA-L 2(3), 2017]

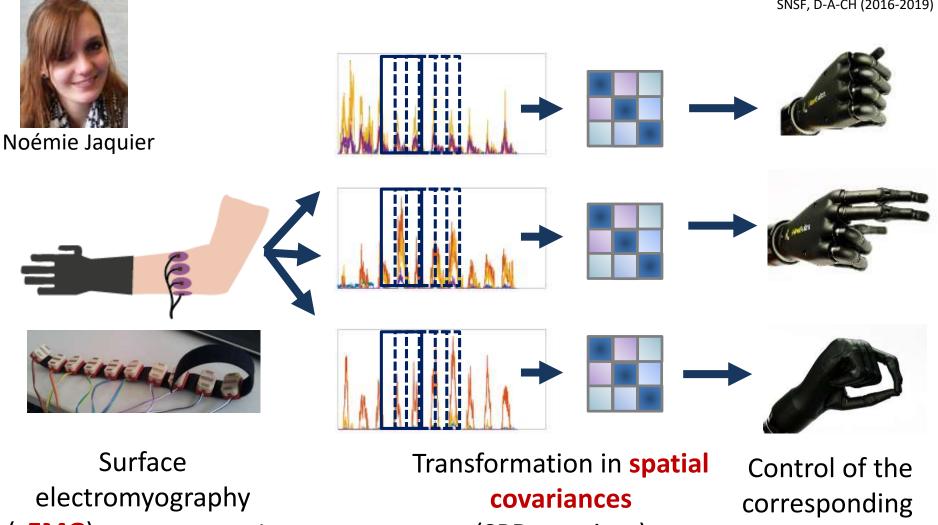
Regression with orientation and position data

Four reproductions with perturbations by the user



[Zeestraten, Havoutis, Silvério, Calinon and Caldwell, IEEE RA-L 2(3), 2017]

Regression with sEMG sensory data



(sEMG) measurements

(SPD matrices)

hand pose

[Jaquier and Calinon, IROS 2017]

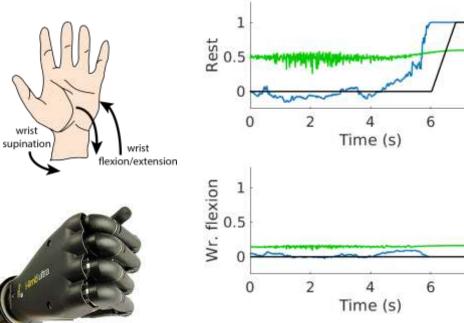
Comparison: standard GMR vs geometric GMR

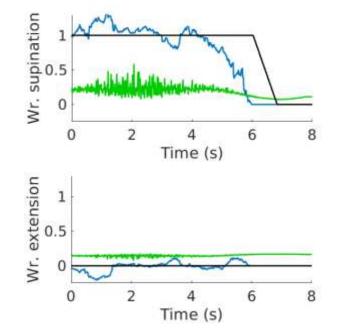
sEMG data from Ninapro database processed as spatial covariances:

Input $\in \mathcal{S}^{12}_{++}$ Output $\in \mathbb{R}^4$

8

8

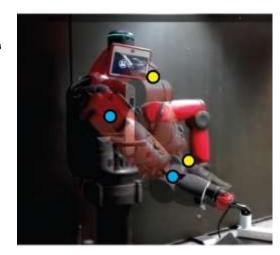




[Jaquier and Calinon, IROS 2017]

Manipulability ellipsoid tracking

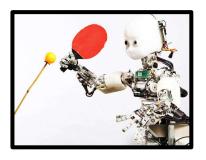
Noémie Jaquier



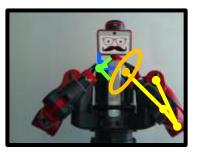
[N. Jaquier, L. Rozo, D.G. Caldwell and S. Calinon, RSS'2018]

Conclusion

Combining statistical learning techniques and model predictive control provides a generative approach to the transfer of skills and movements



Statistical learning in **multiple coordinate systems** can be exploited to learn robot skills and movements from few demonstrations, with **adaptation to new situations**



Robotics is rich in **structures** and **geometries** that can be exploited to acquire skills and movements from a **small set of interactions** (with user or environment) *Source codes (Matlab/Octave, C++ and Python):* http://www.idiap.ch/software/pbdlib/

Contact:

sylvain.calinon@idiap.ch http://calinon.ch

Robot Learning & Interaction Group at Idiap:

Noémie Jaquier

Emmanuel Pignat

Thibaut Kulak

Nicolas Desprès

Hakan Girgin

Dr Andras Kupcsik

Dr Antonio Paolillo

